Control Control Contr

contact@mc2-technologies.com

www.mc2-technologies.com

+33 3 20 04 55 67

Chalmers Winter School

GaN Power amplifiers

January 16th, 2020

SUMMARY :

- I. Quick MC2-Technologies Introduction
- II. OMMIC GaN processes
- III. 20W Ku-Band HPA Example
- IV. 0.5W W-Band PA Example

MC2-Technologies Figures

- Microwave Characterization Center (MC2)
- Spinoff from IEMN laboratory, Lille-métropole
- Created in 2004 by:
 - Nicolas Vellas, Ph.D (CEO)
 - Christophe Gaquière, Pr. (CTO)
- > 50 employees
- Involved in several European R&D projects :
 - H2020 Spiders
 - H2020 ALADIN
 - H2020 GRACE
- Turnover 2019: 8M€

• New facilities in 2020 !

MC2-Technologies Activities

Security Products	Microwave Products	Services	
MM-Imager	Amplifiers	Design MMIC Hybrid & antenna	 GaAs and GaN MMIC (PA, LNA, Mixers) OMMIC, UMS, WIN
	TR modules mmW	Prototyping	processes
UAV Scrambler	Pulsed IV system 1000V/20A	Characterization	
Microwave shield meter	Efuse, Bias tee, Kit SMM	Reliability tests	

Permanent R&D Program on products and services (H2020, ANR)

OMMIC GaN Processes

OMMIC Processes

Process	ED02AH	D01PH	D01MH	D007IH	D01GH	D006GH
Technology	GaAs p-Hemt	GaAs p-Hemt	GaAs m-Hemt	GaAs m-Hemt	GaN on Si/SiC	GaN on Si/SiC
Status	Production	Production	Production	Production	Preproduction	Development
Space Grade	Space Qualified	Space Qualified	Space Qualified	In 2020	In 2020	-
Gate Length <mark>(</mark> μm)	0.18	0.135	0.125	0.07	0.1	0.06
Wafer Size (")	3	3	3	3	3	3
Thinkness <mark>(</mark> μm)	100	70 100	70 100	70 100	100	100
Gate Write	E-beam	E-beam	E-beam	E-beam	E-beam	E-beam
Ft (GHz)	60	100	150	300	110	170
Fmax (GHz)	110	180	250	450	160	250
Vbgd (V)	8	12	8	4	40	25
Vds max (V)	7	10	6	3	25	20
Idss (mA/mm)	250(on)/140(off)	500	300	200	700	800
ldss max (mA/mm)	400(on)/180(off)	700	500	400	1100	1200
MIM Capacitors (pF/mm ²)	49 & 400	400	400	400	400	400
NF (dB)	0.8 (18 GHz)	1.1 (GHz)	0.8 (30 GHz)	0.5 (30 GHz)	1.5 (40 GHz)	1 (50 GHz)
Power Density (mW/mm)	330	640	300	NA	3300	2000
gm (mS/mm)	450	650	700	1600	650	700

OMMIC GaN on Si Process D01GH

- D01GH
 - 100nm gate length
 - Ft/Fmax = 110/160GHz
 - 3300mW/mm power density
- D006GH
 - 60nm gate length
 - Ft/Fmax = 170/250GHz
 - 2000mW/mm power density

- Higher VDS and IDSS -> Higher power density
- than GaAs for similar frequency of operation
- Also more power to dissipateÛ

6

20W Ku-Band HPA Example

Process D01GH

- Bias point and transistor performances
- PA topology
- Zoom on output combining
- Stability
- Measurement results

- Targeted Ku-Band PA performances
- Freq= 15-18GHz
- Psat \geq 43dBm (20W) for 4x2.8mm² PA
- PAE ≥ 30%
- Power Gain ≥ 20dB

<u>Ku-Band PA – Transistor bias voltage</u>

- Drain bias voltage is VD = 12V (recommended)
- Gate bias voltage is VG = -1.4V,
- AB class, usual trade-off between gain and efficiency

<u>Ku-Band PA – Transistor performances</u>

Load-Pull simulation @4dB compression, 8x150um

36.5dBm (single transistor Pout after trade-off) +9dB (combining per 8) -1dB (combining losses) -> Pout > 44dBm is expected

ADS 40

35

30-

25

20

15-

10-

5

0

0

5

10

15

20

25

30

35

40

50

45

Ð

Max Gain (dB)

- 8x150um transistor with gate RC circuit
- Max gain is 10dB

Ku-Band PA - Topology

VD=12 V

gain

٠

•

٠

٠

Ku-Band PA – Power Combiner Zoom

Ku-Band PA – Stability

Example K analysis for PA stage 2, VG sweep

technologies

for unconditional stability

50

40

-20

-30

-40

-50

- Stability analysis is mandatory for amplifiers, up to Ft •
- Different analysis are recommended: Rollet factor (K factor) for each stage, Transient, ٠ Pole/Zero analysis...

Example Poles/Zeros analysis for PA

Ku-Band PA – S-Parameters Measurements

Ku-Band PA – Power Measurements

0.5W W-Band PA Example

Process D006GH

- Bias point and transistor choice
- PA topology
- Lange couplers
- Measurement results

Targeted W-Band PA performances

- Freq= 93-100GHz
- Psat ≥ 27dBm (0.5W)
- Power Gain \geq 10dB

W-Band PA – Transistor bias voltage choice

- Drain bias voltage is 12V
- Gate bias voltage is near maximum gm for highest gain
- ID is below 300 mA/mm to keep disspiated power below maximum recommended value (3.5 W/mm)

W-Band PA – Transistor performances

Load-Pull simulation @2dB compression, 2x30um

 Optimum impedance area is close to the edge of the Smith chart and very selective -> Maximum delivered power per transistor will be around 20dBm -> 8 transistors are needed to reach Pout > 27dBm

0

20

40

80

Frequency (GHz)

60

120

140

160

100

0.0

W-Band PA - Topology

- VD=12 V
- VG=-1.25V (300mA/mm)
- 4 stages needed for usable power gain
- Lange couplers used for good input/output matching and isolation between north and south amplifier branches

W-Band PA – Lange Power Combiner

- TRL calibration to remove GSG pad impact on measurement
- Measured (TRL) Back to Back Lange couplers losses are around 1dB
- In line with simulation

W-Band PA – S-Parameters Measurements

- VD=12V,
- Nominal bias: 300mA/mm, 3.6W/mm
- Total dissipated power in pulse is 3.9W
- Stage 0&1 are CW
- Stage 2&3 are pulsed (50us, 5%)
- Simulation
- MMIC 1
- MMIC 2
- MMIC 3
- MMIC 3
- Small signal gain is around 15dB
- Input and Output Matching are better than -10dB
- Mostly In line with simulation

W-Band PA - Power Measurements

- PAE is around 9%
- GP is around 10dB (P6dB)
- Measured output power level is close to expected level, though power performances are a bit narrower than simulation

Thank you !

contact@mc2-technologies.com

www.mc2-technologies.com

+33 3 20 04 55 67