MILLIMETRE-WAVE GALLIUM NITRIDE SIGNAL SOURCE DESIGN

Dan Kuylenstierna 2020-01-16

OUTLINE

- Motivation and challenges:
 - Why Signal sources and why in GaN technology
- Design of a GaN signal source:
 - Some fundamental oscillator design and a specific GaN example
- Some design examples and GRACE specific work

COMMUNICATION AND SENSORS

PROBLEM I: STRONG BLOCKER

•

PROBLEM II: LIMITED CAPACITY

TRANSIENT RESPONSE OF OSCILLATOR

•Amplitude grows until saturation

Eventually steady state is reached
where variations in frequency and amplitude are small
Frequency variations are known as jitter or phase noise

Time

REPRESENATION OF AN OSCILLATOR

Feed-back view

Positive feedback amplifier with infinite gain if

1-G(s)H(s)=0 (1)

At a frequency where (1) is fulfilled, any little energy injection will spontaneously start an oscillation

Negative resistance

A passive resonator determines the oscillation frequency

Active circuitry (reflection amplifier/ negative resistance) injects energy to compensate losses in the resonator

OSCILLATOR TOPOLOGY

Oscillator topology means in what way the electrical components are arranged to form the oscillator

• differ primarily in the feedback arrangement, the way the signal is coupled between active device and resonator

Several different topologies can give good phase noise if they are well designed

- Some are difficult to tune
- May also be suitable for different technologies

GAN HEMT REFLECTION TYPE OSCILLATOR

I: SELECT DEVICE AND RUN DC SIMULATION

II: DESIGN RESONATOR

- Suitable resonator topologies depend on frequency and technology
- All may be approximated as simple series resonator
- Design challenge is to maximize Q and obtain a reasonable R that can be coupled to reflection amplifier

 A resistance of 5-20 ohm to reflection amplifier is equivalent to about 2-7 dB resonator loss which meets a gain of 5-10 dB from reflection amplifier

III: DESIGN REFLECTION AMPLIFIER

Measured reflection gain slightly higher than simulated

IV: COMPLETE OSCILLATOR

Small-signal open loop gain

ADS -60 -80 dBc -100pnmx, -120--140--160--180-1Ė7 1E3 1E4 1E5 1Ė6 1E8 noisefreq, Hz ADS 0.07 0.06 id_int.i[0] 0.05-0.04-0.03--0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 Vgg

freg (1.000GHz to 40.00GHz)

BALANCED COLPITTS VCO

SUMMARY

- Millimetre-wave low noise floor LO generation critical in future communication and sensor systems
- Short gate length GaN HEMT technology suitable in terms of operation frequency and power capacity.
- VCO, frequency multiplier and frequency divider integrated on one MMIC coupled to external PLL circuit